Este curso es una primera inmersión en el mundo de la ciencia de datos, en el cual el estudiante comprenderá los fundamentos de la ciencia de datos, las características de un científico de datos, las herramientas que utiliza, la metodología que se debe seguir para este estilo de proyectos, y estará en capacidad de aplicar técnicas estadísticas para la construcción e interpretación de modelos analíticos descriptivos.


您将学到什么
Identificar los aspectos fundamentales de los proyectos de ciencia de datos y la metodología ASUM-DM para proyectos de ciencia de datos
Hacer uso de la estadística descriptiva y exploratoria univariada a través de la herramienta Jupyter Notebook para entender datos y resultados
Hacer uso de la estadística bivariada para realizar análisis que involucran más de una variable con el fin de validar hipótesis
您将获得的技能
要了解的详细信息

添加到您的领英档案
8 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有4个模块
Bienvenidos al primer módulo del curso introducción a la ciencia de datos. En este módulo veremos distintos tópicos que te permitirán iniciar en el fascinante mundo de la ciencia de datos, en particular veremos una definición de ciencia de datos y algunos ejemplos en múltiples disciplinas en donde se pueden implementar proyectos de ciencia de datos, Así mismo, te presentaremos una primera metodología denominada ASUM-DM que te ayudará a desarrollar este tipo de proyectos y una segunda metodología denominada Design Thinking que te permitirá encontrar oportunidades analíticas en el contexto en donde te desempeñas. Finalmente, te presentaremos un caso de uso para que pongas en prácticas tus conocimientos.
涵盖的内容
5个视频8篇阅读材料2个作业2个讨论话题3个插件
Bienvenidos al segundo módulo del curso introducción a la ciencia de datos. En este módulo veremos nuestras primeras herramientas para realizar un primer análisis de datos con el fin de encontrar nuestros primeros insights relevantes para el negocio. En este módulo, veremos inicialmente los conceptos de estadística univariada, en particular se estudiarán las medidas de tendencia central, de localización o de posición y medidas de variabilidad. Así mismo, aprenderemos a representar gráficamente nuestros datos con el fin de validar hipótesis de negocio. Adicional a lo anterior en este módulo vas a tener la oportunidad de ver cómo se aplican los distintos tópicos a un caso de uso enfocado en el sector retail mediante el uso de la herramienta Jupyter Notebook. Finalmente, te presentaremos de nuevo el caso de uso de Airbnb para que pongas en prácticas tus conocimientos.
涵盖的内容
4个视频3篇阅读材料3个作业3个讨论话题2个插件
Bienvenidos al tercer módulo del curso introducción a la ciencia de datos. En el anterior módulo, aprendimos sobre cómo validar nuestras primeras hipótesis de negocio a través del uso de estadística exploratoria univariada, la cual nos permitía analizar cada variable por separado, ahora, nos enfrentaremos al reto de analizar dos variables al mismo tiempo, en este módulo, estudiaremos los conceptos de correlación, los cuales nos permitirá analizar dos variables cuantitativas al tiempo, adicional a ello, en este módulo tendrás la oportunidad de estudiar sobre tablas de contingencia y pruebas chi cuadrado las cuales nos ayudarán analizar dos variables categóricas al tiempo. Finalmente, vas a tener la oportunidad de ver cómo se aplican los distintos tópicos vistos en este módulo a un caso de uso enfocado en el sector retail mediante el uso de la herramienta Jupyter Notebook y pondrás en prácticas tus conocimientos aplicando todos los conceptos vistos en este módulo al caso de uso de Airbnb.
涵盖的内容
5个视频5篇阅读材料1个作业2个讨论话题2个插件
Bienvenido al cuarto módulo del curso de Introducción a la ciencia de datos aplicada, denominado comparaciones entre grupos y validación de modelos estadísticos. En este módulo te voy a presentar 2 casos que he seleccionado con la intención de mostrarte la importancia de los contrastes de hipótesis y mediante pruebas de significancia estadística en los diferentes proyectos que realicemos. En ellos, podrás observar por qué es necesario validar correctamente nuestras hipótesis.
涵盖的内容
5个视频9篇阅读材料2个作业2个讨论话题1个插件
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
从 Data Analysis 浏览更多内容
Universidad de los Andes
Universidad de los Andes
人们为什么选择 Coursera 来帮助自己实现职业发展




学生评论
417 条评论
- 5 stars
77.03%
- 4 stars
16.98%
- 3 stars
3.11%
- 2 stars
1.91%
- 1 star
0.95%
显示 3/417 个
已于 Jun 21, 2024审阅
la verdad muy completo y vas aprendiendo cosas nuevas que a lo mejor tenias que reforzar un poco mas y sonde gran ayuda
已于 Aug 26, 2025审阅
Muye buen curso muy bien explicado y proporcinaron las herramientas técnicas para poder realizar las diversas actividades.
已于 Dec 28, 2021审阅
Es un buen curso introductorio, sin embargo tuve problemas con el ejercicio práctico de Arbnb porque me parece que es un ejercicio más complicado que el que muestran en los videos.
常见问题
Al inscribirte al curso puedes elegir la opción que más te interese, bien sea auditarlo, en cuyo caso tendrás acceso al contenido del curso de forma gratuita; o con certificación, en cuyo caso deberás realizar algunas evaluaciones adicionales obligatorias y cumplir con los demás requisitos de la plataforma (hacer la verificación de identidad al presentar las evaluaciones obligatorias, lograr el porcentaje mínimo para pasar el curso y pagar directamente a Coursera el precio de la certificación anunciado en la plataforma).
El certificado de participación lo emite Coursera directamente. Puedes adquirirlo siempre y cuando cumplas con los tres requisitos siguientes: presentar las evaluaciones adicionales obligatorias, hacer la verificación de identidad al presentarlas, lograr el porcentaje mínimo para pasar el curso y pagar el precio anunciado por la plataforma.
Una vez cumplidos los requisitos para la obtención del certificado, debes realizar el pago directamente a Coursera. Ten en cuenta que actualmente las plataformas sólo permiten pagos con tarjetas de crédito internacionales; pero esperamos que pronto activen nuevas alternativas. En caso de que no cuentes con este medio de pago (tarjeta de crédito internacional), puedes solicitar ayuda financiera directamente a la plataforma a través de la opción "Learn more and apply" (Aprender más y aplicar) en la sección "Financial Aid" (Ayuda Financiera) que encuentras debajo del botón de inscripción "Enroll" (Inscribirse). Allí tendrás que completar una aplicación muy sencilla; ningún otro documento o trámite es necesario.
更多问题
提供助学金,