筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
探索应用机器学习课程目录
- 状态:免费试用
University of Glasgow
您将获得的技能: Engineering Practices, Matlab, Engineering Calculations, Engineering Analysis, Engineering, Artificial Intelligence and Machine Learning (AI/ML), Applied Mathematics, Artificial Neural Networks
- 状态:免费试用
您将获得的技能: 机器学习算法, 分类与回归树 (CART), Python 程序设计, 回归分析, 降维, 机器学习, 统计分析, 应用机器学习, Scikit-learn (机器学习库), 功能工程, 监督学习, 无监督学习, 预测建模
- 状态:新状态:免费试用
您将获得的技能: Apache Spark, Keras (Neural Network Library), Deep Learning, Tensorflow, A/B Testing, Big Data, Data Ethics, Applied Machine Learning, Data Processing, Machine Learning Software, Artificial Neural Networks, Machine Learning Algorithms, Data Cleansing, Machine Learning, MLOps (Machine Learning Operations), Artificial Intelligence, Supervised Learning, Statistical Hypothesis Testing, Dimensionality Reduction, Reinforcement Learning
- 状态:新状态:免费试用
您将获得的技能: Dimensionality Reduction, PyTorch (Machine Learning Library), Deep Learning, Keras (Neural Network Library), Tensorflow, Artificial Intelligence, Data Manipulation, Data Cleansing, Jupyter, Feature Engineering, Python Programming, Applied Machine Learning, Scikit Learn (Machine Learning Library), Predictive Modeling, Machine Learning, Matplotlib, Supervised Learning, Exploratory Data Analysis, Unsupervised Learning, Statistical Analysis
- 状态:免费试用
Johns Hopkins University
您将获得的技能: 机器学习算法, 分类与回归树 (CART), 数据处理, R 语言程序设计(中文版), 随机森林算法, 数据收集, 机器学习, 应用机器学习, 预测分析, 功能工程, 监督学习, 回归分析, 预测建模
- 状态:免费试用
New York University
您将获得的技能: 金融交易, 决策树学习, 衍生产品, 市场动态, 降维, 应用机器学习, 统计方法, 机器学习, 马尔可夫模型, 人工神经网络, 回归分析, 张力流, Scikit-learn (机器学习库), 预测建模, 强化学习, 金融市场, 无监督学习, 金融建模, 监督学习, 风险模型
- 状态:免费试用
您将获得的技能: Feature Engineering, Applied Machine Learning, Advanced Analytics, Machine Learning, Unsupervised Learning, Workflow Management, Data Ethics, Supervised Learning, Data Validation, Classification And Regression Tree (CART), Decision Tree Learning, Random Forest Algorithm, Python Programming, Performance Tuning
- 状态:免费试用
IBM
您将获得的技能: 探索性数据分析, 分类与回归树 (CART), 数据处理, 监督学习, 数据分析, 机器学习算法, 降维, 回归分析, 统计, 统计方法, 统计推理, 机器学习, 预测建模, 应用机器学习, Scikit-learn (机器学习库), 功能工程, 无监督学习, 统计假设检验, 数据访问, 统计分析
- 状态:免费试用状态:人工智能技能
University of Pennsylvania
您将获得的技能: Statistical Machine Learning, PyTorch (Machine Learning Library), Statistical Methods, Probability, Probability & Statistics, Sampling (Statistics), Deep Learning, Probability Distribution, Python Programming, Supervised Learning, Statistics, Machine Learning Methods, Machine Learning, Regression Analysis, Data Processing, Agentic systems, Data Science, Artificial Intelligence, Artificial Neural Networks, Algorithms
- 状态:免费试用
Johns Hopkins University
您将获得的技能: Computer Vision, Machine Learning Algorithms, Image Analysis, Supervised Learning, Applied Machine Learning, Feature Engineering, Data Cleansing, Scikit Learn (Machine Learning Library), Data Transformation, Predictive Modeling, Machine Learning, Data Analysis
- 状态:新状态:免费试用
您将获得的技能: AWS SageMaker, Unsupervised Learning, Feature Engineering, Time Series Analysis and Forecasting, Amazon Web Services, Applied Machine Learning, Advanced Analytics, Machine Learning Methods, Cloud Development, Amazon S3, Artificial Intelligence and Machine Learning (AI/ML), Cloud Computing, Machine Learning, Statistical Analysis, Forecasting, MLOps (Machine Learning Operations), Predictive Analytics, Supervised Learning, Dimensionality Reduction, Regression Analysis
- 状态:免费试用
University of Washington
您将获得的技能: 文本挖掘, 分类与回归树 (CART), 深度学习, 计算机视觉, Python 程序设计, 机器学习, 应用机器学习, 回归分析, 人工智能, 数据挖掘, 功能工程, 自然语言处理, 监督学习, 图像分析, 预测建模
总之,以下是 10 最受欢迎的 applied machine learning 课程
- Applied AI for Engineers and Scientists: Foundations: University of Glasgow
- 使用 Python 进行机器学习: IBM
- Advanced Machine Learning, Big Data, and Deep Learning: Packt
- AI with Python: Apply & Implement ML Models: EDUCBA
- 实用机器学习: Johns Hopkins University
- 金融领域的机器学习和强化学习: New York University
- The Nuts and Bolts of Machine Learning: Google
- IBM 机器学习入门: IBM
- AI and Machine Learning Essentials with Python: University of Pennsylvania
- Applied Machine Learning: Techniques and Applications: Johns Hopkins University